Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jian-Fang Ma,* Jin Yang and Jing-Fu Liu

Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China

Correspondence e-mail: jfma@public.cc.jl.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.038$
$w R$ factor $=0.101$
Data-to-parameter ratio $=12.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Hexaaquanickel(II) 3-carboxy-4-hydroxybenzenesulfonate tetrahydrate

In the title compound, $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] L_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, where $\mathrm{H} L=3$ -carboxy-4-hydroxybenzenesulfonic acid $\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{6} \mathrm{~S}\right)$, each $\mathrm{Ni}^{\mathrm{II}}$ cation lies on an inversion center and is octahedrally coordinated by six water molecules. The L^{-}anions do not coordinate to nickel, but act as counter-anions. The crystal structure is composed of alternating layers of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cations and sulfonate anions. The $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cations, water molecules and L^{-}anions are connected through a complex pattern of hydrogen-bonding interactions.

Comment

The crystal structures of five transition metal ($\mathrm{Mn}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}$ and Zn) 3-carboxy-4-hydroxybenzenesulfonates have been determined. The structures of the manganese (Ma et al., 2003a) and cobalt compound (Ma et al., 2003b) have been reported in the preceding papers. The crystal structure of the nickel compound, (I), is presented here. The crystal structures of the other two related compounds are reported in the following papers.

The $\mathrm{Ni}^{\mathrm{II}}$ atom is located on an inversion center, and all other atoms are in general positions. Selected bond lengths and angles are given in Table 1. Fig. 1 shows the asymmetric unit, together with the complete coordination environment of the $\mathrm{Ni}^{\mathrm{II}}$ cation. Compound (I) is isostructural with the cobalt compound (Ma et al., 2003b). The $\mathrm{Ni}-\mathrm{O}$ distances range from 2.030 (2) to 2.057 (2) \AA. The average $\mathrm{Ni}-\mathrm{O}$ distance of $2.047 \AA$ is similar to the values in other nickel compounds (Gunderman et al., 1997; Kosnic et al., 1992).

The alternating layers of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cations and sulfonate anions in (I) are shown in Fig. 2. Selected hydrogen-bond parameters are listed in Table 2.

Experimental

A mixture of 3-carboxy-4-hydroxybenzenesulfonic acid (0.44 g , $2 \mathrm{mmol})$ and $\mathrm{NiCO}_{3}(0.12 \mathrm{~g}, 1 \mathrm{mmol})$ in water $(10 \mathrm{ml})$ was stirred at room temperature for 30 min . Green crystals of compound (I) were obtained after leaving the solution to stand at room temperature for several days. Analysis calculated for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{NiO}_{22} \mathrm{~S}_{2}$: C 24.98 , H 4.49\%; found: C 24.82 , H 4.47%.

Received 28 April 2003
Accepted 11 June 2003
Online 24 June 2003

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{6} \mathrm{~S}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=673.21$
Triclinic, $P \overline{1}$
$a=6.5380(9) \AA$ 。
$b=7.2199$ (10) \AA
$c=14.534$ (4) \AA
$\alpha=92.931(16)^{\circ}$
$\beta=96.494$ (16) ${ }^{\circ}$
$\gamma=102.727(12)^{\circ}$
$V=662.9(2) \AA^{3}$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.686 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 20 \\
& \quad \text { reflections } \\
& \theta=5.9-9.7^{\circ} \\
& \mu=0.99 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, green } \\
& 0.36 \times 0.24 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

Data collection
Siemens $P 4$ diffractometer
ω scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.687, T_{\text {max }}=0.863$
3424 measured reflections
2599 independent reflections
2145 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.101$
$S=1.09$
2599 reflections
208 parameters
H atoms treated by a mixture of independent and constrained refinement

Figure 1
View of the asymmetric unit, expanded to show the complete coordination of $\mathrm{Ni}^{\mathrm{II}}$, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
View of the alternating layers of cations and anions, along the a axis.
atoms of the carboxyl group and hydroxyl group were also positioned geometrically and refined as riding atoms, with $\mathrm{O}-\mathrm{H}=0.82 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. The water H atoms were located in a difference Fourier map and refined with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: XSCANS (Siemens, 1994); cell refinement: $X S C A N S$; data reduction: $X S C A N S$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

This work was supported by the Fok Ying Tung Education Foundation and the Ministry of Education of China.

References

Gunderman, B. J., Kabell, I. D., Squattrito, P. J. \& Dubey, S. N. (1997). Inorg. Chim. Acta, 258, 237-246.
Kosnic, E. J., McClymont, E. L., Hodder, R. A. \& Squattrito, P. J. (1992). Inorg. Chim. Acta, 201, 143-151.
Ma, J.-F., Yang, J. \& Liu, J. F. (2003a). Acta Cryst. E59, m478-m480.
Ma, J.-F., Yang, J. \& Liu, J. F. (2003b). Acta Cryst. E59, m481-m482.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

